
Istra 9.1
End User REST API

Pure Cloud Solutions LTD.
www.purecloudsolutions.com

6 The Pavillions
Amber Close, Tamworth

B77 4RP

Istra	SP	9.1	SaasEnterprise	REST	API	

2	/	29	

I. Table	of	contents

I. Table	of	contents	..	2	

II. Non-disclosure	agreement	..	6	

III. Trademarks	...	6	

V. About	this	document	..	7	

VI. Introduction	..	7	

A. API	goals	..	7	

B. Security	model	...	7	

1. End	users	accounts	..	7	

2. HTTPS	only	...	8	

3. Istra	Password	Policy	...	8	

C. JSON	representation	...	9	

VII. API	general	usage	..	9	

A. HTTP	considerations	..	9	

1. Host	...	9	

2. Authentication	...	10	

a) Basic	authentication	..	10	

b) Using	cookie-based	sessions	...	10	

3. Mandatory	HTTP	headers	..	11	

a) Content-Type:	application/json	...	11	

b) X-Application:	myIstra	...	11	

c) CSRF	prevention	token	..	11	

4. Recommended	headers	..	12	

a) Accept-encoding:		gzip,deflate	..	12	

5. HTTP	methods	...	13	

6. Request	body	...	13	

Istra	SP	9.1	SaasEnterprise	REST	API	

3	/	29	

7. Summing	it	all	..	13	

B. Error	handling	..	14	

VIII. REST	resources	..	14	

A. v1/logs/Voicemail/bean	..	14	

1. GET	..	14	

a) Description	..	14	

b) Request	..	15	

c) Response	...	15	

B. v1/logs/Voicemail/bean/id	..	16	

1. GET	..	16	

a) Description	..	16	

b) Request	..	16	

c) Response	...	17	

2. PUT	..	17	

a) Description	..	17	

b) Request	..	17	

c) Response	...	17	

3. DELETE	...	17	

a) Description	..	17	

b) Request	..	18	

C. v1/logs/Voicemail/bean/id.audioFormat	..	18	

1. GET	..	18	

a) Description	..	18	

b) Request	..	18	

c) Response	...	18	

D. v1/logs/Phone/bean	..	18	

1. GET	..	19	

Istra	SP	9.1	SaasEnterprise	REST	API	

4	/	29	

a) Description	..	19	

b) Request	..	19	

c) Response	...	19	

E. v1/logs/Phone/bean/id	...	20	

1. GET	..	20	

a) Description	..	20	

b) Request	..	20	

c) Response	...	20	

2. DELETE	...	20	

a) Description	..	20	

b) Request	..	21	

F. v1/user/Terminal/id/placeCall	...	21	

1. POST	..	21	

a) Description	..	21	

b) Request	..	21	

c) Response	...	22	

G. v1/user/Info	..	22	

1. GET	..	22	

a) Description	..	22	

b) Request	..	22	

c) Response	...	22	

H. v1/user/IUser/id?rt=customCallerIDChoice,customCallerID	...	23	

1. GET	..	23	

a) Description	..	23	

b) Request	..	23	

c) Response	...	23	

2. PUT	..	24	

Istra	SP	9.1	SaasEnterprise	REST	API	

5	/	29	

a) Description	..	24	

b) Request	..	24	

c) Response	...	24	

IX. Websocket	for	real	time	monitoring	of	Voice	mails	and	Call	History	...	24	

A. Prerequisites	..	25	

B. Starting	the	web	socket	...	25	

C. Keep	alive	..	25	

D. v1/service/EventListener/bean:	creating	an	events	listener	...	26	

1. POST	..	26	

a) Request	..	26	

b) HTTP	response	...	26	

2. DELETE	...	27	

a) Request	..	27	

b) HTTP	response	...	27	

E. v1/logs/Notifications/bean:	counter	of	unread	voicemails	and	call	logs	27	

1. GET	..	27	

a) Request	..	27	

b) HTTP	response	...	27	

c) Web	sockets	real-time	response	...	28	

Istra	SP	9.1	SaasEnterprise	REST	API	

6	/	29	

II. Non-disclosure	agreement

All	information	included	in	this	document	is	the	entire	property	of	Pure Cloud Solutions	and	as	such,	
must	stay	confidential.	

Access	to	this	document	is	restricted	to	those	companies	or	parties	having	signed	a	Non-
Disclosure	Agreement	(NDA)	with	Pure Cloud Solutions.

Diffusing	 information	to	other	parties	without	a	signed	Non-Disclosure	Agreement	between	Pure
Cloud Solutions and	the	other	party	is	strictly	forbidden.	

III. Trademarks

Centile™	and	Istra™	are	trademarks	of	Centile	Telecom	Applications	SAS.	

Istra	SP	9.1	SaasEnterprise	REST	API	

7	/	29	

V. About	this	document

The	goal	of	this	document	is	to	present	the	End	User	REST	API	Centile	offers,	and	is	intended	for	an	
audience	of	developers.	

The	document	considers	you	are	already	 familiar	with	 the	REST	API	over	HTTP	principles1,	and	 the	
JSON	format2.	

Also,	because	of	the	ubiquity	of	the	HTTP	protocol,	the	examples	given	in	this	document	are	not	tied	
to	 a	particular	 programming	 language:	 instead,	 the	 command	 line	 tool	 curl3	is	 preferred,	 since	 it	 is	
available	for	the	three	major	operating	systems,	in	addition	to	offer	a	convenient	abstraction	for	the	
sake	of	readability.	

VI. Introduction

The	 document	 takes	 a	 didactic	 approach:	 it	 follows	 a	 natural	 progression	 from	 the	 very	 first	
connection/authentication	steps	to	subsequent	available	actions,	without	forgetting	error	handling.	

But	before	delving	 into	the	details	of	the	REST	API,	a	few	words	about	 its	goals,	 its	security	model,	
and	the	REST	representation	used.	

A. API	goals

The	End User	REST	API	has	been	designed	with	2	goals	in	mind:	

• Expose	a	public	RESTful	API	over	HTTP,	that	follows	the	REST	principles
• Expose	a	simple	but	powerful	API,	to	enable	simple	user	related	telephony	actions	as	well	as

some	self-care	actions.

This	API	is	ideal	for	any	HTML5	applications	developments,	native	app	development,	and	also	mobile	
back	–end	server	development.	

It	exposes	the	following	features,	subject	to	future	evolutions:	

• Authenticate	end	user	with	login	/	password
• Manage	voice	mails
• Manage	call	history
• Configure	caller	line	id

B. Security	model

1. End users accounts

1 https://en.wikipedia.org/wiki/
Representational_state_transfer 2 https://fr.wikipedia.org/
wiki/JavaScript_Object_Notation
3 http://curl.haxx.se/

Istra	SP	9.1	SaasEnterprise	REST	API	

8	/	29	

First,	only	end	users	accounts	can	use	the	API,	thanks	to	their	login	and	password:	

• Logins:
o Are	created	/	chosen	by	the	administrator	of	the	platform,	and	cannot	be	changed	by

the	end	user.
o They	could	be	an	arbitrary	text	string	(e.g.	“jsmith”),	unique	on	the	platform.	Email

are	 good	 candidates,	 since	 they	 are	 unique	 by	 nature	 (e.g.:
jsmith@supertelephony.net)

o Please	 note	 another,	 alternative,	 natural	 login	 identifier	 is	 a	 PSTN	 or	 PLMN	of	 the
user,	 but	 of	 course	 this	 applies	 only	 when	 the	 user	 has	 such	 a	 public	 number
assigned

• Passwords:
o For	 telephony	 reasons,	 the	 passwords	 are	 made	 of	 only	 digits	 (e.g.:	 2345,

7825346…).
o Indeed,	when	authenticating	onto	an	IVR	(VoiceMail	for	instance),	one	has	to	be	able

to	enter	his	password	using	only	the	phone	keypad.

Of	course,	when	a	user	account	signs	in	the	API,	it	has	only	access	to	its	personal	settings	and	publicly	
available	information,	without	access	to	other	user’s	settings.	

For	the	remaining	of	this	document,	examples	given	will	assume	the	login	myLogin	and	the	password	
myPassword	in	examples.	Of	course	you	will	have	to	use	yours.	

2. HTTPS only

Istra is made from scratch to run only on HTTPs (HTTP over TLS), and this applies to this REST API.

This particularly means you must have a valid SSL certificate.

If you don’t, you still have the option to ignore the server certificate during the SSL handshake: while
this is convenient for development or test purpose, Centile does not recommend in any way to rely
on such weak SSL environment in production.

That being clear, please note the curl tool can ignore the invalid server certificate thanks to its
option --insecure. As a result, everywhere a curl example appears, you could optionally add this
option to run the example in an invalid SSL environment. And most probably, your
preferred programming language has a way to deal similarly (or, alternatively, you would find a way
to force to trust your invalid certificate: details vary according to your programming environment).

3. Istra Password Policy

Also a word on end user account usage: you might fear they could be compromised, especially if the
REST API is exposed to Internet for instance.

Please note it is not necessary mandatory to expose the REST API over Internet: it all depends of your
system & network architecture and/or needs: perhaps only a back-end access is enough for instance.

Istra	SP	9.1	SaasEnterprise	REST	API	

9	/	29	

In	case	the	API	is	exposed	on	Internet,	please	know	that	Istra	supports	a	Password	Policy	that	helps	
you	defeat	malicious	usage:	

• It	can	define	acceptable	passwords	(length,	complexity…)
• Also,	accounts	can	be	suspended	in	case	of	too	many	failures	in	a	row,	and	you	can	control

the	parameters	that	detect	this	(against	brute	force	attack)
• Sessions	are	time	limited,	configrable	on	the	platform

More	about	security	is	described	in	another	document.	

C. JSON	representation

Without	surprise,	the	API	deals	with	the	JSON	format,	which	is	expected	to	be	already	known	by	the	
reader.	

You	will	need	to	manipulate	some	JSON	objects,	that	will	be	documented	later.	

VII. API	general	usage

We	cover	here	basic	HTTP	considerations	(including	authentication),	as	well	as	error	handling	and	the	
common	HTTP	methods	used.	

A. HTTP	considerations

1. Host

The	REST	API	is	exposed	onto	a	host	that	could	take	the	following	appearance:	

1. Either	https://restletrouter.mydomain.com/
2. Or,	 alternatively,	 https://webadmin.mydomain.com/restletrouter (where	 the	 fragment	

webAdmin	can	be	replaced	with	mytelephony	or	myIstra	as	well,	provided	they	are	deployed	on	
the	platform).		

The	important	fragments	are:	

• restletrouter,	which	is	actually	the	API	end	point	itself
• mydomain.com,	which	is	your	host	name	on	which	the	restletrouter	is	reachable	(note:	it	could

be	an	IP	as	well).

Using	one	or	the	other	form	above	just	depends	of	your	deployment	architecture,	and	we	can	assist	
you	determining	the	best	option	for	your	case.	

The	 remaining	 document	 will	 assume	 the	 generic	 form	 https://HOST/restletrouter,	 and	 you	 will	
have	to	adapt	the	examples	to	your	specific	environment	if	needed.	

Istra	SP	9.1	SaasEnterprise	REST	API	

10	/	29	

2. Authentication

How	to	authenticate	against	the	API?	

a) Basic authentication

The	simple	basic	authentication	is	used:	it	requires	sending	in	clear	text	your	end	user	login	prefixed	
with	 ENDUSER:	 and	 password.	 Since	 Istra	 runs	 over	 HTTPS,	 this	 is	 not	 an	 issue:	 this	 traffic	 will	
be	encrypted	through	SSL.	In	curl,	this	is	done	through	option	–u	(fragment	only	shown	below):	

curl -u ENDUSER:mylogin:mypassword

b) Using cookie-based sessions

While	the	REST	API	is	completely	stateless	itself,	a	login	in	the	API	initiates	a	session	server	side.	

Sessions	 have	 a	 default	 expiration	 time	 after	 30	 minutes	 of	 inactivity	 (modifiable	 in	 the	
Istra	Password	Policy,	mentioned	in	VI.B.3).	

Using	 a	 session	 avoids	 the	 need	 to	 authenticate	 and	 renew	 a	 session	 each	 time,	 which	
would	consume	resources	on	the	server.	The	way	to	do	this	is:	

1. To	 identify	 the	 cookie	 named	 myIstra_SESSIONID returned	 at	 initial	 login	 (in	 header	 Set-
Cookie)

2. And	then	to	resend	it	at	next	request	without	the	need	of	the	user	and	
password.

For	 instance,	 such	 an	 example	with	 curl	 for	 the	 point	 above	would	 give,	 after	 an	 initial	 successful	
authenticated	request:	

curl -b "myIstra_SESSIONID=8204685884374655192;Path=/restletrouter"

(NB:	 the	 double	 quote	 char	 "	 is	 used	 to	 escape	 the	 semicolon	 that	 would	 otherwise	 end	
the	command	line	shell).	

It	 is	 recommended	 to	 use	 cookie-based	 session	 to	 avoid	 creating	 a	 new	 session	 at	 each	 request.	
However,	 for	 the	 sake	 of	 readability,	 in	 order	 to	 ease	 the	 reading	 of	 this	 document,	 the	 next	
curl	examples	will	not	use	cookie-based	sessions.	

Important	notes:	

1. Providing	 an	 inexistent	 SESSIONID would	 result	 in	 a	 HTTP 401 Unauthorized response	 as	
expected.

Istra	SP	9.1	SaasEnterprise	REST	API	

2. After	first	authentication,	it	is	absolutely	mandatory	to	provide	another	information,	namely
the	CSRF5	prevention	token,	to	be	able	to	place	subsequent	calls	onto	the	same	session.	See
point	§		3.c)	“CSRF	prevention	token”	below

3. Mandatory HTTP headers

When	using	the	API,	the	following	headers	are	required.	

a) Content-Type: application/json

This	header	 is	 required,	and	specifies	 the	 representation	 to	use	 in	 requests/responses:	 so	 far,	only	

JSON	is	supported.	With	curl,	it	translates	to	the	following	option	(fragment	only):	

curl -H "Content-Type: application/json"

b) X-Application: myIstra

This	 second	mandatory	header	 is	 a	proprietary	one,	 and	 control	whatever	part	of	 the	API	 you	 can	
access.	Indeed,	several	different	applications	or	end	points	can	use	the	Istra	API,	and	according	to	the	
REST	client	that	sets	this	header,	the	API	will	give	access,	or	not,	to	some	REST	resources.		

Of	course	since	this	is	sent	by	a	potentially	untrusted	client,	the	header	itself	has	little	sense	in	terms	
of	security	and	access	control:	 indeed	the	REST	API	relies	only	on	the	login	and	password	to	ensure	
one	has	access.		

Instead,	this	header	serves	another	goal:	it	states	which	“part”	of	the	API	you	plan	to	use	as	a	client.	
This	is	a	way	to	make	sure	you	will	not	accidentally	perform	operations	on	others	aspects	of	the	API	
(e.g.:	reporting,	recording,	self	care,	etc…)	

In	our	case,	setting	this	myIstra	value	let	us	access	the	REST	resources	exposed	in	this	document.	

This	header	translates	to	curl	as	follows	(fragment	only):	

curl -H "X-Application: myIstra"

c) CSRF prevention token

The	way	the	API	prevents	CSRF	attacks	is,	one	a	session	has	been	establish,	to	expect	from	the	client	
to	give	the	CSRF	prevention	token	in	each	subsequent	request.	

We	exaplain	below	how	to	get	this	token,	and	how	to	use	it.	

(1) How to get the CSRF prevention token?

5 CSRF: Cross Site Request Forgery. See https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

11	/	29	

Istra	SP	9.1	SaasEnterprise	REST	API	

12	/	29	

To	get	it,	one	has	to	submit	a	login	request	first,	which	is	performed	through	a	POST	onto	the	resource	
v1/service/Login.	A	curl	example	would	be:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra" -H "Content-Type:
application/json" -X POST https://HOST/restletrouter/v1/service/Login

In	 case	 of	 successful	 authentication	 (200 OK),	 the	HTTP	 response	 contains	 the	 X-Application	 header,	
which	 includes	both	the	sent	myIstra	value,	and	also	 the	CSRF	prevention	token	 in	 return.	Such	an	
example	could	be:	

X-Application:myIstra;f26d2c6e-cd90-4871-8bf9-f30fb9e63d85

Please	 note	 the	 CSRF	 prevention	 token	 is	 only	 returned	 for	 this	 REST	 resource,	 only	 in	 case	 of	
succesful	login.	

However,	 for	 future	 compatibility,	 one	 should	 expect	 to	 detect	 and	parse	 the	 token	 value	 in	 each	
response,	 if	 provided:	maybe	 a	 future	 evolution	 in	 the	 API	 will	 change	 the	 CSRF	 token,	 based	 on	
some	internal	security	policy.	

(2) How to use the CSRF prevention token?

This	 is	very	simple:	the	token	value	must	be	used	 in	all	subsequent	calls	 to	the	API,	 in	the	same	X-
Application	header	already	seen	above.	The	client	must	send	the	mandatory	header	with	both	the	
myIstra	 value	 and	 the	 token,	 separated	 by	 the	 semicolon	 character.	 A	 curl	 example	 would	 be	
(fragment	only):	

curl -H "X-Application: myIstra;f26d2c6e-cd90-4871-8bf9-f30fb9e63d85"

4. Recommended headers

The	header	below	is	recommended,	as	part	of	best	practices.	

a) Accept-encoding: gzip,deflate

One	of	best	practices	when	it	comes	to	HTTP	traffic	is	to	compress	it,	in	order	to	save	bandwidth.	This	
comes	as	a	little	cost,	since	the	compression	must	be	done	server	side,	and	decompression	at	client	
side,	but	it	saves	a	lot	since	the	JSON	representation	nature,	being	plain	text,	offers	high	compression	
ratio.	

Speaking	of	curl,	it	can	be	used	jointly	with	the	gunzip	6utility	on	the	command	line.	For	instance	as	
follows	(fragment	only):	

6 Windows users: using the syntax given requires using a Unix type shell because of the pipe (|) usage.
You could use for instance http://bliker.github.io/cmder with the full package “msysgit”

Istra	SP	9.1	SaasEnterprise	REST	API	

curl -H "Accept-encoding: gzip,deflate" https:// https://HOST/restletrouter/REST_RESOURCE
| gunzip -c

For	 the	 sake	 of	 readability,	 examples	 will	 not	 include	 this	 header,	 but	 we	 recommend	 using	 this	
header	in	your	production	environment.	

5. HTTP methods

The	API	uses	the	following	HTTP	methods	for	the	create,	read,	update,	delete	(CRUD)	operations:	

CRUD	operation	 HTTP	method	

Create	 POST	

Read	 GET	

Update	 PUT	

Delete	 DELETE	

Please	note	 that	not	all	REST	 resources	 support	all	methods:	 some	are	 read-only	 for	 instance.	This	
will	be	indicated	for	each	resource.	

Again,	in	terms	of	curl	usage,	its	option	-X	defines	the	method	to	issue	(fragment	only):	

curl -X HTTP_METHOD

Where	of	course	HTTP_METHOD	is	the	method	to	use	(e.g	GET	or	POST,	etc…)	

	notation	which	is	

6. Request body

Some	HTTP	methods	require	a	body	to	be	sent:	the	JSON	payload.	

When	such	a	body	is	needed,	one	can	use	the	--data	option	with	curl,	or	the	@file
preferred7	in	this	document:	

curl --data @request.json

The	 @	 prefix	 indicates	 curl	 to	 use	 the	 content	 of	 the	 file	 whose	 name	 is	 given:	 here	 the	 file	
request.json,	that	is	in	the	current	working	directory.	

7. Summing it all

Cumulating	all	of	the	above	gives	a	general	curl	command	like	this	one:	

7 Why using this notation? Because the same syntax of the curl examples can be used for the three operating
systems. Otherwise, if the body request is part of the command line using –-data, different escaping methods apply

and as a result the examples must be rewritten for Windows vs Unix shells style (OSX and GNU/Linux).

13	/	29	

Istra	SP	9.1	SaasEnterprise	REST	API	

14	/	29	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X HTTP_METHOD https://HOST/restletrouter/REST_RESOURCE --data
@request.json

As	 already	 covered,	 the	 argument	 --data @request.json	 is	 optional,	 and	 depends	 of	 the	
HTTP_METHOD	used:	some	requests	need	a	body,	some	not.		

B. Error	handling

Each	 time	 the	API	 is	 invoked	 and	 an	 error	 occurs,	 you	will	 get	 the	 following	 type	 of	 JSON	 answer	
response,	plus	an	appropriate	HTTP	status	code8:		

{
"code": "ERR_XYZ",
"message": "Some human readable error message detailing the XYZ code."

}

When	a	request	succeeds,	the	HTTP 200 OK	status	code	is	used.	

VIII. REST	resources

This	section	 lists	 the	main	REST	resources	offered	through	the	API.	You	will	note	the	API	 resources	
are	prefixed	with	the	v1/	path	fragment,	which	indicates	the	API	version.	Only	v1/	is	released	so	far.	

In	 general,	 the	 expected	 HTTP	 response	 expected	 varies	 according	 to	 the	 request,	 but	 the	 HTTP	
status	code	200	is	always	returned.	

When	an	error	occurs,	the	appropriate	HTTP	status	code	4xx	or	5xx	 is	used,	and	the	following	JSON	
body	is	returned:	

{
"code": "Some message here."

}

The	 value	 of	 the	 "code"	 field	 will	 give	 some	 detailled	 information	 as	 both	 an	 API	 error	 code	 and	
human	error	message.	

A. v1/logs/Voicemail/bean

This	REST	resource	is	the	entry	point	to	voice	mails.	

1. GET

a)
Description
8 https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#4xx_Client_Error

Istra	SP	9.1	SaasEnterprise	REST	API	

15	/	29	

The	GET	method	lists	the	existing	voice	mails	for	the	current	user.	

b) Request

There	is	no	body	for	this	request,	so	client	is	left	with	the	following:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X GET https://HOST/restletrouter/v1/logs/Voicemail/bean

Optional	 pagination	 parameters	 can	 be	 passed	 in	 the	 query	 string	 are,	 e.g.:	
v1/logs/Voicemail/bean?offset=0&length=20

• offset=0:	results	are	paginated.	This	parameter	indicates	from	which	index	(zero-based)	you
want	the	list	of	voice	mails	(sorted	by	timestamp).	Zero	to	start	from	the	beginning.

• length=20:	length	of	the	requested	page.	2o	results	will	be	returned.

c) Response

A	response	follows	this	syntax	(given	values	just	for	illustration):	

{
"count":1,
"items":[

{
"msgid":"20160219170845749-313-144",
"filename":"20160219170845749-313-144_I_N-read.au",
"id":"20160219170845749",
"restUri":"v1/logs/Voicemail/bean/20160219170845749",
"playNumber":"555;lra=144;cd_msgid=20160219170845749-313-144",
"timestamp":"1455898125804",
"durationSecond":5,
"remoteNumber":"313",
"restUriContact":"v1/directory/all/contacts/IUser-3646149346018693287",
"remoteLabel":"John Doe",
"type":"internal",
"priority":"normal",
"read":true,
"callbackNumber":"313"

}
]

}

In	this	JSON	object,	one	sees	these	two	main	keys,	count	and	items,	described	below:	

Key	 Type	 Description	
count	 Integer	 This	is	the	number	of	results	that	are	returned	in	the	next	field	

Items	 Array	 of	
voicemail	
JSON	
objects	

The	 actual	 array	 of	 voice	 mails,	 each	 represented	 as	 a	 specific	 JSON	
voicemail	object.	

In	turn,	the	JSON	voicemail	object	is	made	of	the	following:	

Key	 Type	 Description	
msgid	 String	 An	 internal	 voicemail	 id,	 not	 useful	 for	 public	 usage	 (c.f.	 “id”	

Istra	SP	9.1	SaasEnterprise	REST	API	

16	/	29	

instead).	
filename	 String9	 The	 actual	 file	 name	 containing	 the	 audio,	 as	 existing	 on	 the	

platform	 file	 system.	 Note	 the	 filename	 name	 can	 change	
according	to	its	status	read/unread.		

id	 String	 This	voice	mail	ID,	as	used	in	further	REST	calls	
restUri	 String	 The	URI	used	to	refer	to	this	voice	mail	for	subsequent	action	
playNumber	 String	 This	 is	a	specific	destination	value	to	use	when	the	client	wants	

the	 Istra	platform	to	place	a	call	 from	a	user	phone	terminal	 to	
the	voicemail	IVR.	With	this	value,	the	later	will	play	directly	this	
specific	voicemail,	notably	bypassing	the	main	menu.		

Also	 note	 the	 way	 to	 place	 a	 call	 is	 described	 in	 section	 VIII.F	
“v1/user/Terminal/id/placeCall”	

timestamp	 String	 The	UNIX	timestamp	when	the	voicemail	has	been	left.	
durationSecond	 Integer	 The	duration	of	the	voicemail	
remoteNumber	 String	 This	 is	 the	 actual	 number	 that	 left	 the	 voice	mail.	 Could	 be	 an	

short	number	(internal	call),	or	external	number	(PSTN,	PLMN)	
restUriContact	 String	 When	the	call	 is	 internal,	this	 is	an	URI	to	the	 internal	user	that	

left	the	call.	
remoteLabel	 String	 The	actual	name	of	the	caller,	as	known	by	the	platform	(so,	first	

name	+	last	name	if	it	is	an	internal	known	user,	or	caller	line	id	
as	presented	by	the	network	otherwise)	

type	 String	 A	flag	to	indicate	the	call	is	internal	or	external.	
priority	 String	 Sometimes,	 the	 priority	 can	 be	 set	 by	 the	 caller	 when	 he’s	

leaving	the	voice	mail.	This	 is	offered	by	the	voice	mail	 IVR,	and	
not	often	used	since	it	is	a	legacy	usage.	

read	 Boolean	 Indicate	whether	this	voicemail	is	read	or	unread.	
callbackNumber	 String	 This	is	the	number	ready	to	dial	(it	includes	dal	prefix	for	eternal	

numbers	 if	 required)	 in	 order	 to	 reach	 the	 caller	 (internal	 or	
external	number)	

B. v1/logs/Voicemail/bean/id

This	REST	resource	permits	to	read	information	(GET),	update	(PUT)	or	delete	(DELETE)	a	specific	voice	
mail.	

1. GET

a)

The	GET	

Description

method	retrieves	details	of	a	specific	voice	mail.

b) Request

The	request	follows:	

9 The API deals with long integer ID (64 bits) as String, in order to prevents potential Javascript client to fail when it

tries to parse a “too large” long that would not fit the underlying Javascript Number implementation (based on 64-
bit binary format IEEE 754).

Istra	SP	9.1	SaasEnterprise	REST	API	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X GET https://HOST/restletrouter/v1/logs/Voicemail/bean/id

array	seen	

c) Response

The	response	is	a	JSON	object.	It	is	exactly	the	same	syntax	than	an	element	of	the	items	
in	REST	resource	v1/logs/Voicemail/bean	

2. PUT

a)

The	PUT	

Description

modifies	a	voice	mail,	based	on	the	JSON	input	given.

b) Request

Modifying	a	voice	mail	is	done	through:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X PUT https://HOST/restletrouter/v1/logs/Voicemail/bean/id --data
@request.json

With	the	file	request.json	being	the	following	valid	JSON	object:	

{
"read": false

}

Keys	behave	as	follows:	

Key	 Type	 Mandatory?	 Description	
read	 Boolean	 Optional.	 Changes	 the	 read	 status	 to	 the	 Boolean	 value	 given.	

Please	note	it	changes	the	filename	on	the	file	system.	

The	read	field	is	the	only	one	that	can	be	modified	so	far.	

c) Response

As	a	response,	the	JSON	voice	mail	object	is	returned,	to	reflect	the	changes.	Please	note	toggling	the	
read/unread	status	actually	changes	the	filename	on	the	file	system.	

3. DELETE

a) Description

This	 simply	 deletes	 the	 voice	mail.	 The	 operation	 is	 not	 reversible;	 the	 corresponding	 audio	 file	 is	

permanently	deleted.	

17	/	29	

Istra	SP	9.1	SaasEnterprise	REST	API	

18	/	29	

b) Request

There	is	no	body	for	this	request,	so	client	is	left	with	the	following:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X DELETE https://HOST/restletrouter/v1/logs/Voicemail/id

C. v1/logs/Voicemail/bean/id.audioFormat

This	REST	resource	exposes	the	actual	audio	file	itself.	

1. GET

a) Description

The	GET	method	retrieves	the	audio	file	the	given	voice	mail	 id:	the	answer	is	not	a	JSON	response,	
but	the	actual	binary	content	of	that	file.	Multiple	formats	are	
accepted.	

b) Request

The	request	follows:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -X GET
https://HOST/restletrouter/v1/logs/Voicemail/bean/id.ogg

In	 the	 request	 above,	 the	".ogg"	 extension	 file	 is	used	 in	order	 to	ask	 the	audio	 file	 in	Ogg	Vorbis	
format.	 Other	 acceptable	 common	 format	 are	 .ogg	 (Ogg	 Vorbis),	 .aac	 or.mp4	 (Advanced	 Audio	
Coding),	.au	(AU	µ-law).	

Note	 that	 when	 used	 from	 a	 browser,	 the	 GET	 request	 accepts	 the	 query	 string	 "dl=true":	 it	 will	
instruct	 the	 server	 to	 respond	 with	 the	 HTTP	 header	 "Content-Disposition:attachment;",	 which	
triggers	the	download	of	the	file	rather	than	invoking	the	browser	built-in	player.	

c) Response

The	response	is	the	audio	file	content	itslef,	in	the	requested	format.	

Please	 note	 that	 the	 appropriate	 HTTP	 header	 Content-Type	 will	 be	 returned	 (application/ogg,	
application/mp4,	application/au,	etc…)	

When	 the	 requests	 contained	 the	 query	 string	 "dl=true", the HTTP	 header	 "Content-

Disposition:attachment;"	wimll	be	returned	as	well.	

D. v1/logs/Phone/bean

This	REST	resource	is	the	entry	point	to	get	information	(GET)	about	the	user’s	call	history.	

Istra	SP	9.1	SaasEnterprise	REST	API	

19	/	29	

1. GET

a)

The	GET	

Description

method	lists	the	existing	calls	history	for	the	current	user.

b) Request

The	request	is:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X GET https://HOST/restletrouter/v1/logs/Phone/bean

The	pagination	parameters	introduced	in	§	A.1.b)Request	are	also	applicable	here.	The	query	string	
also	support	the	following	filters	(e.g.:	v1/logs/Phone/bean?offset=0&length=20&isIncoming=true)	

• isIncoming=true:	returns	only	incoming	calls	(excludes	the	ones	I	placed)
• isMissed=true:	returns	only	missed	calls	(excludes	the	ones	I	answered)

c) Response

A	response	follows	this	syntax	(given	values	just	for	illustration):	

{
"count":1,
"items":[

{
"restUri":"v1/logs/Phone/bean/1456922299813-53816",
"callHistoryId":"1456922299813-53816",
"isIncoming":false,
"isMissed":false,
"isRejected":false,
"isWritten":true,
"remoteLabel":"00302286071130",
"remoteNumber":"000302286071130",
"remoteType":"EXTERNAL_NUMBER",
"ringDurationSecond":38,
"talkDurationSecond":4,
"timestamp":"1456922299813",
"userEntName":"centile",
"userNumber":"144"

}
]

}

This	follows	the	same	structure	than	the	voice	mails	(count	integer	and	items	array).	

In	turn,	the	JSON	call	log	object	is	made	of	the	following:	

Key	 Type	 Description	
restUri	 String	 The	URI	used	to	refer	to	this	call	log		mail	for	subsequent	action	
callHistoryId	 String	 This	call	log	ID,	as	used	in	further	REST	calls	
isIncoming	 Boolean	 Was	it	an	incoming	call?	(otherwise:	outgoing)	
isMissed	 Boolean	 Was	it	missed?	(otherwise:	answered)	
isRejected	 Boolean	 Not	implemented	

Istra	SP	9.1	SaasEnterprise	REST	API	

20	/	29	

isWritten	 Boolean	 Not	implemented	
remoteLabel	 String	 The	 actual	 caller	 id	 of	 this	 call,	 of	 the	 caller,	 as	 known	 by	 the	

platform	 (so,	 first	 name	 +	 last	 name	 if	 it	 is	 an	 internal	 known	
user,	or	caller	line	id	as	presented	by	the	network	otherwise)	

remoteType	 String	 The	 actual	 type	 of	 the	 caller.	 Most	 of	 the	 time	 will	 be	
"EXTERNAL_NUMBER"	 (for	 an	 external	 PSTN	 or	 PLMN	 cller)	 or	
"STATION"	(for	an	internal	extension	caller).	

For	the	sake	of	exhaustiveness,	value	can	be	one	of	the	following	
string:	

STATION, TRUNK, FAX, VOICEMAIL, MEDIASERVER,
REMOTE_STATION, GROUP, SPEEDDIAL, DEFAULT_ADDRESS,
ACD_GROUP, PAGING_GROUP, UNKNOWN, EXTERNAL_NUMBER,
MOBILE_STATION, TRUNK_MNO,TRUNK_VASPLATFORM

ringDurationSecond	 Integer	 How	long	did	this	call	ring,	in	seconds?	
talkDurationSecond	 Boolean	 How	long	did	this	call	last,	in	terms	of	talking	time.	
timestamp	 String	 This	is	the	number	to	dial	in	order	to	reach	the	caller	(internal	or	

external	number)	
userEntName	 String	 Name	of	the	enterprise	to	which	the	suer	belongs	
userNumber	 String	 Extension	of	the	user.	

E. v1/logs/Phone/bean/id

This	REST	resource	is	the	entry	point	to	manage	one	specific	call	log	of	the	user’s	call	history.	

1. GET

a)

The	GET	

Description

method	retrieves	details	of	a	specific	all	history	entry.

b) Request

The	request	follows:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X GET https://HOST/restletrouter/v1/logs/Phone/id

array	seen	

c) Response

The	response	is	a	JSON	object.	It	is	exactly	the	same	syntax	than	an	element	of	the	items	
in	REST	resource	v1/logs/Phone/bean

2. DELETE

a) Description

	

This	simply	deletes	a	call	history	entry.	The	operation	is	not	reversible.	

b) Request

There	is	no	body	for	this	request,	so	client	is	left	with	the	following:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X DELETE https://HOST/restletrouter/v1/logs/Phone/id

F. v1/user/Terminal/id/placeCall

This	pragraph	explains	how	to	place	a	call	to	a	given	destination.	

A	use	case	in	the	context	of	voicemail	mangement	is	to	be	able	to	call	the	Voicemail	IVR,	and	make	it	
plays	a	specific	voicemail	instead	of	going	though	all	the	main	menu	and	choices.	

1. POST

a) Description

This	 REST	 resource	 actually	 makes	 Istra	 place	 a	 call	 from	 the	 given	 phone	 terminal	 to	 a	 given	
destination.	

The	 client	 lsut	 give	 an	 existing	 phone	 terminal	 id:	 this	 one	 is	 retrieved	 through	 another	 REST	
resource,	“v1/user/Info”,	exposed	in	next	paragraph	§	VIII.G	

b) Request

Request	follows	the	following	form:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X POST https://HOST/restletrouter/v1/user/Terminal/id/placeCall -
-data @request.json

The	payload	in	request.json	is	actually	a	JSON	object	which	has	the	following	simple	structure:	

{
"destination": "targetNumber"

}

The	value	"targetNumber"	is	a	string	containing	the	value	of	the	number	to	dial.	

In	 the	 case	 of	 the	 voicemail	 management,	 it	 is	 the	 value	 "playNumber"	 of	 a	 given	 voicemail	 JSON	
object	seen	in	§	VIII.A.1.c),	so	something	like	"555;lra=144;cd_msgid=20160219170845749-313-144".	

It	could	also	be	another	number	 like	an	extension	 (e.g.:	"200"),	a	PSTN	prefixed	by	 its	external	dial	
prefix	(e.g.	"00497231260"	in	the	French	national	dial	plan	with	0	as	the	external	dial	prefix)	or	a	PLMN	

21	/	29	

Istra SP 9.1 SaasEnterprise REST API

Istra	SP	9.1	SaasEnterprise	REST	API	

22	/	29	

prefixed	as	well	 (e.g.:	"00632654230"	with	 same	 conditions)	or	 any	other	number	dialable	 from	 the	
telephony	point	of	view	("+632654230"…)	

c) Response

Unless	an	error	occurs	(HTTP	status	code	will	tell),	the	expected	response	is	a	HTTP 200 OK,	which	is	
supposed	to	be	returned	simultaneously	with	the	phone	terminal	placing	the	call.	

G. v1/user/Info

This	REST	resource	exposes	some	informations	about	the	user:	only	a	small	subset	is	described	here,	
the	part	actually	useful	to	retrieve	information	about	the	user	phone	terminals.	

1. GET

a)

The	GET	

Description

method	retrieves	details	about	the	user.

b) Request

Request	is	simply:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X GET https://HOST/restletrouter/v1/user/Info

c) Response

The	response	is	a	JSON	object.	Only	a	small	subset	is	described	below:	

{
"userName":"Emmanuel Roubion",
"istraVersion":"9.1.93",
"istraBuildID":"647",
"ent":{

"fullName":"Centile",
…

},
"terminals":[

{
"abstractTerminalID":"8925157588004488415",
"label":"my Desk Phone",
…

}
],
"user":{

"customCallerIDChoice":"ManualSetting",
"customCallerID":"+33489879144",
"restUri":"v1/user/IUser/8967300633232582576"
…

},
…

}

Istra	SP	9.1	SaasEnterprise	REST	API	

23	/	29	

In	this	JSON	object,	the	three	dots	character	"…"	indicates	more	keys	exists	but	are	not	documented.	
Documented	keys	are:	

Key	 Type	 Description	
userName	 String	 The	first	and	last	name	of	this	user	

istraVersion	 String	 Server	version	
istraBuildID	 String	 Build	number	for	this	version	
ent	 String	 Another	 JSON	object,	with	main	sub	key	being	"fullName"	and	 is	 the	full	

name	of	the	enterprise	in	which	this	user	is	defined.	
terminals	 Array	 of	

terminal	
JSON	
objects	

The	 actual	 array	 of	 terminals	 that	 this	 user	 owns:	 only	 one	most	 of	 the	
time,	but	several	in	case	of	multi-terminals	depoyment.	Its	main	key	are:	

• "abstractTerminalID":	 it	 is	 a	 String	 containing	 the	 ID	 of	 this
terminal.	This	ID	must	be	used	in	order	to	place	call	as	explained
in	§	VIII.F	“v1/user/Terminal/id/placeCall”

• "label":	an	other	String,	containing	the	label	of	this	terminal.	The
user	can	change	this	value	in	his	myIstra.

user	 JSON	
object	

A	JSON	object	containing	various	user	setting,	and	most	notably:	
• "customCallerIDChoice":	 values	 "FromPresenceState"	 and

"manualCustomCallerID"	are	accepted.	The	later	must	be	in	use,	
in	order	to	specify	arbitrarily	the	caller	line	ID	

• "customCallerID":	the	actual	caller	ID	in	E.164	format
• "restUri":	 this	 is	 the	 URI	 of	 the	 REST	 ressources	 that

exposes	 the	 user	 object,	 used	 in	 	 next	 section
"v1/user/IUser/8967300633232582576"

H. v1/user/IUser/id?rt=customCallerIDChoice,customCallerID

This	REST	resource,	with	the	given	query	string,	exposes	the	caller	id	of	the	user.	

1. GET

a)

The	GET	

Description

method	retrieves	details	about	the	user’s	caller	line	ID

b) Request

Request	is	using	the	rt	query	string	in	order	to	reduce	the	scope	of	the	request	to	the	useful	sub	set:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X GET
https://HOST/restletrouter/v1/user/IUser/id?rt=customCallerIDChoice,customCallerID

c) Response

The	response	is	a	JSON	object:	

Istra	SP	9.1	SaasEnterprise	REST	API	

24	/	29	

"restUri":"v1/user/IUser/8967300633232582576",
"customCallerIDChoice":"ManualSetting",
"customCallerID":"+33489879144"

}

(note	the	restURI	is	always	returned	in	case	of	the	rt	query	string).	

This	JSON	object	reuses	the	information	already	seen	in	§	G	"v1/user/Info	

2. PUT

a)

The	PUT	

Description

can	manages	the	caller	line	ID	management.

b) Request

Modifying	the	CLI	is	done	as	follows:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X PUT
https://HOST/restletrouter/v1/user/IUser/id?rt=customCallerIDChoice,customCallerID --data
@request.json

With	the	file	request.json	being	the	following	valid	JSON	object:	

{
"customCallerIDChoice":"ManualSetting",
" manualCustomCallerID":"+33489879144"

}

The	client	has	to	make	sure:	

• The	field	"customCallerIDChoice"	is	set	to	"ManualSetting"	
• The	field	"	manualCustomCallerID"	is	set	to	an	acceptable	caller	ID	in	E.164	format.	It	must	be	

acceptable	 in	terms	of	what	the	Istra	platform	will	accept	according	to	 its	custom caller id	
policy.	

c) Response

The	response	is	a	JSON	object	identical	to	the	one	submitted	in	request,	with	the	additional	restUri	
field.	

IX. Websocket	for	real	time	monitoring	of	Voice	mails	and	Call	History

Istra	SP	9.1	SaasEnterprise	REST	API	

25	/	29	

In	this	section,	we	describe	the	usage	of	the	web	socket10	scheme	protocol	that	the	API	offers.	Web	
sockets	 have	 the	 protocol	 scheme	 ws://,	 or	 wss://	 for	 its	 TLS-based	 equivalent:	 only	 the	 later	 is	
supported.	

In	this	mode,	the	client	subscribes	to	some	particular	events	through	a	web	socket,	and	is	notified	by	
a	server	push	of	the	events	it	subscribed	to.	This	eliminates	the	need	for	a	polling	mechanism.	

A. Prerequisites

In	order	to	establish	a	web	socket	connection,	the	client	has	to	be	already	authenticated	and	opened	
a	HTTP	session	onto	the	API.	Then	its	session	has	the	right	to	upgrade	to	a	wss://	session.	

Unfortunately,	 the	way	 to	deal	with	we	sockets	varies	according	 to	programming	 langues,	and	 the	
reader	is	left	with	his	skills	to	implement	web	sockets	in	his	application	or	back-end	server.	

Additionnally,	because	the	curl	tool	used	so	far	does	not	support	neither	ws://	nor	wss://	protocols,	
and	 because	 there	 is	 no	 popular	 open	 source	 tool	 available	 for	 the	 command	 line	 interface,	 no	
examples	on	command	line	are	given.	

B. Starting	the	web	socket

A	client	has	to	upgrade	the	current	HTTP	connection	into	a	web	socket	one.	This	is	usually	done	by	an	
HTTP	GET	request	onto	a	specific	web	sockets	URI,	asking	for	upgrade	in	headers.	For	instance:	

• a	GET	method
• onto	URI	wss://HOST/restletrouter/ws-service/myIstra
• with	mandatory	headers	already	seen	in	previous	section	(please	note	the	CSRF	prevention

token	is	not	required	here,	by	design)	
• with	additional	header	Connection: Upgrade

Success	is	indicated	by	

• an	HTTP	status	code	101 Switching Protocols
• the	HTTP	response	header	Connection: Upgrade
• the	HTTP	response	header	Upgrade: WebSocket
• and	of	course	the	web	socket	connection	opened

C. Keep	alive

In	order	to	keep	alive	the	connection,	client	has	to	send	a	keep	alive	periodically	during	to	prevent	
inactivity	to	expire	the	session.	

10 WebSocket is a protocol providing full-duplex communication channels over a single TCP
connection, transported over HTTP & HTTPS. C.f. https://en.wikipedia.org/wiki/WebSocket	

Istra	SP	9.1	SaasEnterprise	REST	API	

26	/	29	

The	recommended	period	is	30	seconds,	and	the	recommended	JSON	message	is:	

{
"keepalive" : "true"

}

D. v1/service/EventListener/bean:	creating	an	events	listener

Once	the	web	socket	 is	opened,	the	client	has	to	ask	the	API	to	create	an	event	 listener,	through	a	
HTTP	request.	

1. POST

Creation	of		a	listener.	

a) Request

The	request	is:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X POST https://HOST/restletrouter/v1/service/EventListener/bean -
-@request.json

The	actual	JSON	payload	is:	

{
"name": "MixedLogsL"

}

The	JSON	payload	is	made	of:	

Key	 Type	 Description	
Name	 String	 A	local	identifier,	whose	value	is	arbitrarily	decided	by	the	client.	

This	actually	creates	a	listener:	there	is	still	the	step	to	make	it	subscribe	to	some	specified	
events.	

b) HTTP response

The	HTTP	response	is:	

{
"name":"MixedLogsL",
"restUri":"v1/service/EventListener/bean/MixedLogsL"

}

Which is made of:

Istra	SP	9.1	SaasEnterprise	REST	API	

27	/	29	

Key	 Type	 Description	
name	 String	 The	given	local	identifier	

restUri	 String	 The	URI	to	refer	to	for	this	listener.	

2. DELETE

A	graceful	termination	of	the	subscription	can	be	
requested.	

a) Request
The	request	is	simply.	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X DELETE
https://HOST/restletrouter/v1/service/EventListener/bean/MixedLogsL

b) HTTP response

No	particular	response	is	expected.	

E. v1/logs/Notifications/bean:	counter	of	unread	voicemails	and	call	logs

Once	a	 listener	exists,	the	client	can	point	to	this	REST	resource	to	GET	a	snapshot	of	actual	values,	
and/or	specifies	the	listener	he	wants	to	use	in	order	to	subscribe	to	it.	

1. GET

a) Request

For	 instance,	the	client	will	GET	 the	actual	snapshot	of	 the	unread	voice	mails	and	unread	call	 logs,	
and	ask	the	resource	to	be	observer	by	a	previously	reated	listener:	

curl -u ENDUSER:mylogin:mypassword -H "X-Application: myIstra;CSRF_TOKEN" -H "Content-
Type: application/json" -X GET
https://HOST/restletrouter/v1/logs/Notifications/bean?listenerName=MixedLogsL

b) HTTP response

The	HTTP	response	is	the	actual	snapshot:	

{
"model":"v1/data/RestletApiSessionCounters",
"unreadMissedCalls":2,
"unreadTextMessages":0,
"unreadVoiceMails":1

}

Istra	SP	9.1	SaasEnterprise	REST	API	

28 / 29

Description	of	fields:	

Key	 Type	 Description	
model	 String	 The	 actual	 model	 used	 in	 this	 reponse.	 Only	

"v1/data/RestletApiSessionCounters"	exists	so	far.	

unreadMissedCalls	 Integer	 Actual	number	of	missed	calls	
unreadTextMessages	 Integer	 Actual	number	of	unread	text	messages	(applies	only	to	the	instant	

messaging	feature	of	the	platform)	
unreadVoiceMails	 Integer	 Actual	number	of	unread	voice	mails	

When	the	web	socket	is	also	opened,	the	server	will	push	a	new	frame	to	the	client	to	indicate	the	
new	snapshot	in	real	time,	as	shown	next.	

c) Web sockets real-time response

When	the	web	socket	connection	 is	established,	and	a	 listener	has	been	created,	and	a	new	event	
arises	in	the	system,	it	is	pushed	to	the	client	as	a	new	frame	onto	the	web	socket,	as	a	JSON	object	
described	below:		

{
"listenerName":"MixedLogsL",
"item":{

"counters":{
"model":"v1/data/RestletApiSessionCounters",
"unreadMissedCalls":0,
"unreadTextMessages":0,
"unreadVoiceMails":1

}
}

}

Description	of	fields:	

Key	 Type	 Description	
listenerName	 String	 The	 name	 of	 the	 previoulsy	 created	 listener	 (useful	 if	 multiple	

listeners	exists	on	different	resources)	

item	 JSON	
objet	

The	 object	 actually	 embeds	 a	 counters	 JSON	 object,	 which	 is	 the	
new	snapshot	of	the	events	being	listened	to.	It	is	exactly	the	same	
structure	than	the	one	obtained	through	a	GET.	

Pure Cloud Solutions Ltd
www.purecloudsolutions.com

6 The Pavillions, Amber Close
Tamworth, B77 4RP

0333 150 6780

